

Fuzzy Time Series

Bernd Möller

- 1 Description of fuzzy time series
- 2 Modelling of fuzzy time series
- 3 Forecasting of fuzzy time series
- 4 Examples
- 5 Conclusions

1 Description of fuzzy time series

- 2 Modelling of fuzzy time series
- 3 Forecasting of fuzzy time series
- 4 Examples
- 5 Conclusions

Institute for Static und Dynamics of Structures

Institute for Static und Dynamics of Structures

Fuzzy time series

Institute for Static und Dynamics of Structures

Fuzzy variables

lpha -discretization

$$\tilde{x} = (X_{\alpha} = [x_{\alpha l}, x_{\alpha r}] | \alpha \in [0, 1])$$

Institute for Static und Dynamics of Structures

Fuzzy variables

$l_{\alpha}r_{\alpha}$ -Discretization = discretization with increments

Institute for Static und Dynamics of Structures

Fuzzy variables

$l_{\alpha}r_{\alpha}$ -Discretization

Institute for Static und Dynamics of Structures

Fuzzy variables

 $\underline{A} \odot \tilde{x} = \tilde{z}$

$$\begin{bmatrix} a_{1,1} & a_{2,2} & \dots & a_{1,2n-1} & a_{1,2n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,2n-1} & a_{2,2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{2n-1,1} & a_{2n-1,2} & \dots & a_{2n-1,2n-1} & a_{2n-1,2n} \\ a_{2n,1} & a_{2n,2} & \dots & a_{2n,2n-1} & a_{2n,2n} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_{2n-1} \\ \Delta x_{2n} \end{bmatrix} = \begin{bmatrix} \Delta z_1 \\ \Delta z_2 \\ \vdots \\ \Delta z_{2n-1} \\ \Delta z_{2n} \end{bmatrix}$$
$$\tilde{x} \oplus \tilde{y} = \tilde{z} \longrightarrow \Delta x_i + \Delta y_i = \Delta z_i$$

 $\tilde{x} \ominus \tilde{y} = \tilde{z} \implies \Delta x_i - \Delta y_i = \Delta z_i$

$$\Delta z_i \geq 0$$
 for $i=1,\,2,\,...,\,2n$

Institute for Static und Dynamics of Structures

Graphical description of fuzzy time series

Plots

Institute for Static und Dynamics of Structures

Graphical description of fuzzy time series

Plots

Institute for Static und Dynamics of Structures

Numerical description of fuzzy time series

Fuzzy component model

$$\tilde{x}_{\tau} = \tilde{t}_{\tau} \oplus \tilde{z}_{\tau} \oplus \tilde{r}_{\tau}$$

- with: \tilde{t}_{τ} ... functional value of the fuzzy trend function $\tilde{t}(\tau)$
 - \tilde{z}_{τ} ... functional value of the fuzzy cycle function $\tilde{z}(\tau)$
 - $ilde{r}_{ au}$... realization of a fuzzy random noise process $ilde{R}(au)$

$$\Delta x_j(\tau) = \Delta t_j(\tau) + \Delta z_j(\tau) + \Delta r_j(\tau) \quad \forall \quad j = 1, 2, ..., 2n$$

$$\begin{aligned} \Delta x_j(\tau) &\geq 0\\ \Delta t_j(\tau) &\geq 0\\ \Delta z_j(\tau) &\geq 0\\ \Delta r_j(\tau) &\geq 0 \end{aligned} \right\} \quad \forall \quad \tau \in \mathbf{T}, \quad j = 1, 2, ..., n - 1, n + 1, ..., 2n \end{aligned}$$

applicable by non-stationary fuzzy time series

Description of fuzzy time series Modelling of fuzzy time series Forecasting of fuzzy time series Examples

Institute for Static und Dynamics of Structures

Description of fuzzy time series by empirical parameters

applicable by stationary and ergodic fuzzy time series

• empirical fuzzy mean value
$$\tilde{\overline{x}} = \frac{1}{N} \bigoplus_{\tau=1}^{N} \tilde{x}_{\tau}$$

 \implies empirical $l_{\alpha}r_{\alpha}$ -covariance function

$${}_{lr}\hat{K}_{x}(\Delta\tau) = \begin{bmatrix} \hat{k}_{1,1}(\Delta\tau) & \hat{k}_{1,2}(\Delta\tau) & \cdots & \hat{k}_{1,2n-1}(\Delta\tau) & \hat{k}_{1,2n}(\Delta\tau) \\ \hat{k}_{2,1}(\Delta\tau) & \hat{k}_{2,2}(\Delta\tau) & \cdots & \hat{k}_{2,2n-1}(\Delta\tau) & \hat{k}_{2,2n}(\Delta\tau) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \hat{k}_{2n-1,1}(\Delta\tau) & \hat{k}_{2n-1,2}(\Delta\tau) & \cdots & \hat{k}_{2n-1,2n-1}(\Delta\tau) & \hat{k}_{2n-1,2n}(\Delta\tau) \\ \hat{k}_{i,j}(\Delta\tau) = \frac{1}{N} \sum_{\tau=1}^{N-\Delta\tau} \left[(\Delta x_{i}(\tau) - \Delta\overline{x}_{i}) \cdot (\Delta x_{j}(\tau + \Delta\tau) - \Delta\overline{x}_{j}) \right]_{n,2n}(\Delta\tau) \end{bmatrix}$$

1 Description of fuzzy time series

- 2 Modelling of fuzzy time series
- 3 Forecasting of fuzzy time series
- 4 Examples
- 5 Conclusions

Institute for Static und Dynamics of Structures

Modelling of fuzzy time series

Fuzzy time series \longrightarrow realization of a fuzzy random process $\tilde{X}_{\tau}: \Omega \to F(\mathbb{R})$

→ family of fuzzy random variables $(\tilde{X}_{\tau})_{\tau \in \mathbf{T}}$

- $\mathbf{F}(\mathbb{R})$... set of all fuzzy variables on \mathbb{R}
- Ω ... space of the random elementary events

realizations of a fuzzy random variable are **fuzzy variables**

each realization of a fuzzy random process yields a sequence of fuzzy variables at discrete time points

1

1

Institute for Static und Dynamics of Structures

Fuzzy random variables

Description of fuzzy time series Modelling of fuzzy time series Forecasting of fuzzy time series Examples

8 realizations

slide 16

Institute for Static und Dynamics of Structures

Fuzzy random variables

1. α -level sets are random sets

2.
$$X_{\alpha_i} = [X_{\alpha_i l}; X_{\alpha_i r}]$$

interval bounds of the α-level sets are random variables

Institute for Static und Dynamics of Structures

Fuzzy random variables

$\alpha\operatorname{-Discretization}$

$$\tilde{X} = (X_{\alpha} = [X_{\alpha l}, X_{\alpha r}] | \alpha \in [0, 1]) \longrightarrow \underbrace{\text{random } \alpha \text{-level sets}}_{\bullet \text{ bounds are random variables}}$$

Institute for Static und Dynamics of Structures

Fuzzy random variables

 $l_{\alpha}r_{\alpha}$ -Discretization

$$X_{\alpha_{i}} = [X_{\alpha_{i}l}; X_{\alpha_{i}r}] \longrightarrow \begin{cases} X_{\alpha_{i}l} = X_{\alpha_{i+1}l} - \Delta X_{\alpha_{i}l} \\ X_{\alpha_{i}r} = X_{\alpha_{i+1}r} + \Delta X_{\alpha_{i}r} \end{cases} \qquad X_{\alpha_{n}n} = \Delta X_{\alpha_{n}n} \\ X_{\alpha_{n}n} = X_{\alpha_{n}n} + \Delta X_{\alpha_{n}n} \end{cases}$$

$$l_{\alpha}r_{\alpha}\text{-Representation} \qquad _{lr}\tilde{X} = \begin{bmatrix} \Delta X_{\alpha_{1}l} \\ \Delta X_{\alpha_{2}l} \\ \vdots \\ \Delta X_{\alpha_{n}l} \\ \Delta X_{\alpha_{n}r} \\ \vdots \\ \Delta X_{\alpha_{2}r} \\ \Delta X_{\alpha_{1}r} \end{bmatrix} = \begin{bmatrix} \Delta X_{1} \\ \Delta X_{2} \\ \vdots \\ \Delta X_{n} \\ \Delta X_{n+1} \\ \vdots \\ \Delta X_{2n-1} \\ \Delta X_{2n} \end{bmatrix}$$
 correlated variables

Institute for Static und Dynamics of Structures

Fuzzy random process
$$\longrightarrow$$
 $(\tilde{X}_{\tau})_{\tau \in \mathbf{T}}$

I first and second order moments in $l_{\alpha}r_{\alpha}$ -representation

$$F[\tilde{X}_{\tau}] = \tilde{m}_{\tilde{X}_{\tau}} = \int_{0}^{\infty} \cdots \int_{-\infty}^{\infty} \cdots \int_{0}^{\infty} {}_{lr} f_{\tilde{X}_{\tau}}(\tilde{x}) \tilde{x} \, d\Delta x_{1} \cdots d\Delta x_{n} \cdots d\Delta x_{2n}$$

$$\downarrow crar[\tilde{X}_{\tau}] = ir \underline{\sigma}_{\tilde{X}_{\tau}}^{2}$$

$$\downarrow crar[\tilde{X}_{\tau}] = lr \underline{\sigma}_{\tilde{X}_{\tau}}^{2}$$

$$\downarrow crar[\tilde{x}] = lr \underline{\sigma}_{\tilde{X}_{\tau}}^{2}$$

$$\downarrow crar[\tilde{x}] = lr \underline{\sigma}_{\tilde{X}_{\tau}}^{2}$$

$$\downarrow crar[\tilde{x}] = lr \underline{\sigma}_{\tilde$$

Institute for Static und Dynamics of Structures

 $p_{2l,i}+m_{\Delta \epsilon_i}$ $p_{1l,i}+m_{\Delta \epsilon_i}$ $m_{\Delta \epsilon_i}$ $p_{1r,i}+m_{\Delta \epsilon_i}$ $p_{2r,i}+m_{\Delta \epsilon_i}$

 $\Delta \varepsilon_i$

Institute for Static und Dynamics of Structures

Fuzzy-AR-process Fuzzy-MA-process

with: \underline{A}_{j} , \underline{B}_{j} ... real valued [2n,2n] parameter matrices

 $\widetilde{\mathcal{E}}_{ au}$... fuzzy random variable of a fuzzy-white-noise-process

Forecasting presupposes the estimation of the parameter matrices.

slide 22

Estimation of the parameter $\{\underline{A}_1, \dots, \underline{A}_p, \underline{B}_1, \dots, \underline{B}_q\} = \underline{P}$

3 strategies for parameter estimation:

I dea 1: Minimization of the differences between empirical parameters and model parameters

$$\sum_{j=1}^{2n} \left(\Delta \overline{x}_j - \Delta m_j(\underline{P}) \right)^2 +$$
$$\sum_{\Delta \tau = -\infty}^{\infty} \sum_{k,l=1}^{2n} \left(\hat{r}_{k,l}(\Delta \tau) - r_{k,l}(\Delta \tau(\underline{P}))^2 \right)^2 = \min$$

applicable for stationary and ergodic fuzzy time series

Estimation of the parameter $\{\underline{A}_1, \dots, \underline{A}_p, \underline{B}_1, \dots, \underline{B}_q\} = \underline{P}$

Idea 2: Minimization of the average distance between measured fuzzy data and optimal 1-step-forecasting

 \mathbf{N}

1

$$\overline{d}_F(\underline{P}) = \frac{1}{N-p} \sum_{\tau=p+1}^N d_F\left(\tilde{x}_\tau; \overset{\circ}{\tilde{x}}(\underline{P})\right) \stackrel{!}{=} \min$$

distance function

$$d_F(\tilde{x}_{\tau};\hat{\tilde{x}}_{\tau}(\underline{P})) = \int_0^1 d_H\left(X_{\alpha}(\tilde{x}_{\tau});X_{\alpha}(\hat{\tilde{x}}_{\tau}(\underline{P}))\right) d\alpha$$

HAUSDORF distance
$$d_H(A;B) = \max\left\{\sup_{a \in A} \inf_{b \in B} d_E(a;b); \sup_{b \in B} \inf_{a \in A} d_E(a;b)\right\}$$

applicable for non-stationary fuzzy time series

Estimation of the parameter $\{\underline{A}_1, \dots, \underline{A}_p, \underline{B}_1, \dots, \underline{B}_q\} = \underline{P}$

Idea 3:

Minimization of the square error between measured fuzzy data and optimal 1-step-forecasting

$$E = \frac{1}{2} \sum_{\tau=1+p}^{N} \sum_{i=1}^{2n} \left(\Delta x_i(\tau) - \Delta \mathring{x}_i(\tau(\underline{P})) \right)^2 \stackrel{!}{=} \min$$

incremental improvement of the parameter

$$\underline{A}_r(\text{new}) = \underline{A}_r(\text{old}) + \Delta \underline{A}_r \qquad r = 1, 2, ..., p$$

$$\underline{B}_s(\text{new}) = \underline{B}_s(\text{old}) + \Delta \underline{B}_s \qquad s = 1, 2, ..., q$$

$$\mathbf{e.g.:} \quad \Delta \underline{A}_r = -\eta \frac{\partial E}{\partial \underline{A}_r} = -\eta \begin{bmatrix} \frac{\partial E}{\partial a_{1,1}(r)} & \cdots & \frac{\partial E}{\partial a_{1,2n}(r)} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial a_{2n,1}(r)} & \cdots & \frac{\partial E}{\partial a_{2n,2n}(r)} \end{bmatrix}$$

applicable for non-stationary fuzzy time series

- 1 Description of fuzzy time series
- 2 Modelling of fuzzy time series
- **3** Forecasting of fuzzy time series
- 4 Examples
- 5 Conclusions

Institute for Static und Dynamics of Structures

Forecasting strategies

future values of a fuzzy time series are realizations of a fuzzy random forecast process

Fuzzy random forecast process =family of conditional random variables

Institute for Static und Dynamics of Structures

Forecasting strategies

1. Optimal forecasting

$$\mathring{\tilde{x}}_{N+h}(\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_N) = E[\tilde{X}_{N+h} | \tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_N] = E[\tilde{\tilde{X}}_{N+h}]$$

optimal forecasted value

conditional fuzzy expected value of X_{N+h}

• optimal 1-step-forecasting (Fuzzy-ARMA[p,q]-process)

$$\mathring{\tilde{x}}_{N+1} = \underline{A}_1 \odot \tilde{x}_N \oplus ... \oplus \underline{A}_p \odot \tilde{x}_{N+1-p} \oplus \overbrace{E[\tilde{\mathcal{E}}_{\tau}]}^{\mathcal{E}} \ominus \underline{B}_1 \odot \tilde{\varepsilon}_N \ominus ... \ominus \underline{B}_q \odot \tilde{\varepsilon}_{N+1-q}$$

optimal h-step-forecasting (Fuzzy-ARMA[p,q]-process)

$$\mathring{\tilde{x}}_{N+h} = \underline{A}_1 \odot \tilde{x}_{N+h-1} \oplus \ldots \oplus \underline{A}_p \odot \tilde{x}_{N+h-p} \oplus \underbrace{E[\tilde{\mathcal{E}}_{\tau}]}_{E} \ominus \underline{B}_1 \odot \hat{\tilde{\varepsilon}}_{N+h-1} \ominus \ldots \ominus \underline{B}_q \odot \hat{\tilde{\varepsilon}}_{N+h-q}$$

with
$$\tilde{x}_{N+u} = \begin{cases} \tilde{x}_{N+u} & \text{for } u \leq 0 \\ \mathring{\tilde{x}}_{N+u} & \text{for } u > 0 \end{cases}$$
 and $\tilde{\varepsilon}_{N+u} = \begin{cases} \tilde{\varepsilon}_{N+u} & \text{for } u \leq 0 \\ E[\tilde{\mathcal{E}}_{\tau}] & \text{for } u > 0 \end{cases}$

Institute for Static und Dynamics of Structures

Forecasting strategies

2. Fuzzy forecast intervals

A fuzzy forecast interval \tilde{x}_{N+h}^{κ} includes realizations $\tilde{\tilde{x}}_{N+h}$ with probability κ

s future realizations are simulated by Monte Carlo Simulation

Forecasting strategies

→ 3. Fuzzy random forecasting

objective: estimation of the fuzzy random variable \tilde{X}_{N+h}

Monte Carlo simulation of s fuzzy variables $\vec{\tilde{x}}_{N+h}$

statistical evaluation of the simulated fuzzy variables $\vec{\tilde{x}}_{N+h}$

- e.g. fuzzy probability distribution function $_{lr}F_{\vec{x}}(\tilde{x})$
 - fuzzy expected value $E[ec{ ilde{X}}_{N+h}]$
 - $l_{\alpha}r_{\alpha}$ -covariance function $l_{r}K_{\vec{X}}(\tau_{a},\tau_{b})$

Institute for Static und Dynamics of Structures

- 1 Description of fuzzy time series
- 2 Modelling of fuzzy time series
- 3 Forecasting of fuzzy time series
- 4 Examples
- 5 Conclusions

Institute for Static und Dynamics of Structures

measured data of heavy goods vehicle traffic

Institute for Static und Dynamics of Structures

Measured data of heavy goods vehicle traffic

Institute for Static und Dynamics of Structures

Time series with measured settlements

(over 4 years)

•

date	1st measurement [mm]	2nd measurement [mm]	3rd measurement [mm]	mean value [mm]
÷	:	:	÷	:
30.05.2000	22,51	22,50	22,52	22,510
27.06.2000	22,50	22,52	22,53	22,517
27.07.2000	22,40	22,40	22,41	22,403
30.08.2000	22,35	22,36	22,35	22,353
27.09.2000	21,72	21,80	21,77	21,763

.

.

Institute for Static und Dynamics of Structures

Measured data of an extensometer

Institute for Static und Dynamics of Structures

Damage of a T-beam plate

indirect forecasting

Institute for Static und Dynamics of Structures

Damage of a T-beam plate

Institute for Static und Dynamics of Structures

Damage of a T-beam plate

Fuzzy random forecasting

- Monte Carlo Simulation of 100 future realizations
- 8 realizations $\vec{\tilde{p}}_{N+12}$ at time point $\tau = N + 12$

Institute for Static und Dynamics of Structures

Damage of a T-beam plate

indirect forecasting

Fuzzy damage indicator
$$\tilde{D}_{\underline{K}} = 1 - \frac{\det\left[\underline{\tilde{K}}_{T}(\tau, \underline{\tilde{v}}, \tilde{s})\right]}{\det\left[\underline{\tilde{K}}_{T}(\tau_{0}, \underline{\tilde{v}}_{0}, \tilde{s}_{0})\right]}$$

Conclusions

- Time series with fuzzy data can be modeled as realizations of fuzzy random processes
- New $l_{\alpha}r_{\alpha}$ -representation of fuzzy random variables enables the modeling of fuzzy time series as realizations of fuzzy random processes
- Fuzzy-ARMA-processes allow the simulation and forecasting of fuzzy time series

Thank you!